Finding Volumes of Solids with Known Cross-Sections

1. Find the volume of a solid with a base bounded by the equations $y=\sqrt{x}$ and $\mathrm{y}=1$ and the $\mathrm{x}=4$ if the cross sections perpendicular to the x -axis are squares. (1.167)
2. A solid has its base is the region bounded by the lines $x+y=4, x=0$ and $y=0$ and the cross section is perpendicular to the x-axis are equilateral triangles. Find its volume. (18.475)
3. Find the volume of the solid whose base is the region inside the circle $x^{2}+y^{2}=9$ if cross sections taken perpendicular to the y-axis are squares. (144)
4. Find the volume of the solid whose base is the region bounded by the lines $x+4 y=4, x=0$, and $y=0$, if the cross sections taken perpendicular to the x - axis are semicircles. (.524)
5. Find the volume of the solid that lies between planes perpendicular to the $\mathrm{x}-$ axis at $\mathrm{x}=0$ and $\mathrm{x}=4$. The cross sections perpendicular to the x -axis between these planes run from one side of the parabola $x=y^{2}$ to the other. The cross sections are squares with bases in the $x y$-plane. (32)

6. Find the volume obtained by rotating the graphs of $f(x)=9-x^{2}$ and $y=12$ for $0 \leq x \leq 3$ about the line $y=15 .(746.442)$
