AP Calculus Free Response Questions - Area and Volume

2006 \#1

Let R be the shaded region bounded by the graph of $y=\ln x$ and the line $y=x-2$, as shown above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y=-3$.
(c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

2007 \#1

Let R be the region in the first and second quadrants bounded above by the graph of $y=\frac{20}{1+x^{2}}$ and below by the horizontal line $y=2$.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the x-axis.
(c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this solid.

2008 \#1

Let R be the region bounded by the graphs of $y=\sin (\pi x)$ and $y=x^{3}-4 x$, as shown in the figure above.
(a) Find the area of R.
(b) The horizontal line $y=-2$ splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.
(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x)=3-x$. Find the volume of water in the pond.

Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

2006B \#1

Let f be the function given by $f(x)=\frac{x^{3}}{4}-\frac{x^{2}}{3}-\frac{x}{2}+3 \cos x$. Let R be the shaded region in the second quadrant bounded by the graph of f, and let S be the shaded region bounded by the graph of f and line ℓ, the line tangent to the graph of f at $x=0$, as shown above.
(a) Find the area of R.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y=-2$.
(c) Write, but do not evaluate, an integral expression that can be used to find the area of S.

2007 B \#1

Let R be the region bounded by the graph of $y=e^{2 x-x^{2}}$ and the horizontal line $y=2$, and let S be the region bounded by the graph of $y=e^{2 x-x^{2}}$ and the horizontal lines $y=1$ and $y=2$, as shown above.
(a) Find the area of R.
(b) Find the area of S.
(c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=1$.

