Unit 7 Alternate Assignments:

If you are absent during class, it is your responsibility to make up missed work. Below is a list of your alternative assignments.

1. Complete the assignment for the day you were absent.
2. Check your work online using the resources available on my website.
3. Show me the work the next day you are present.
4. Make sure to ask questions during class (if time allows) or before/after school.

Day Absent	Topic	Assigment
$12 / 9$	6.1 Area Btwn Two Curves	p.418 (1,3,5,15 - 49 odds, omit $17,33,37)$
$12 / 12$	6.2A Volume: The Disk Method	p. 428 (1-4, 7-8, 9, 11)
$12 / 13$	6.2 V Volume: The Washer Method	p. 428 (17-37 odds)
$12 / 14$	6.3 Volume: The Shell Method	p.437 (1-23 ever other odd, 31)
$12 / 15$	6.4 Volume of Solids with Known Cross Sections	Problems Set Below

6.4 Volume of Solids with Known Cross Sections

1. Find the volume of a solid with a base bounded by the equations $y=\sqrt{x}$ and $\mathrm{y}=1$ and the $\mathrm{x}=4$ if the cross sections perpendicular to the x -axis are squares. (1.167)
2. A solid has its base is the region bounded by the lines $x+y=4, x=$ 0 and $y=0$ and the cross section is perpendicular to the x-axis are equilateral triangles. Find its volume. (18.475)
3. Find the volume of the solid whose base is the region inside the circle $x^{2}+y^{2}=9$ if cross sections taken perpendicular to the y-axis are squares. (144)
4. Find the volume of the solid whose base is the region bounded by the lines $x+4 y=4, x=0$, and $y=0$, if the cross sections taken perpendicular to the x - axis are semicircles. (.524)
5. Find the volume of the solid that lies between planes perpendicular to the x-axis at $x=0$ and $x=4$. The cross sections perpendicular to the x-axis between these planes run from one side of the parabola x $=y^{2}$ to the other. The cross sections are squares with bases in the xy-plane. (32)

6. Find the volume obtained by rotating the graphs of $f(x)=9-x^{2}$ and y $=12$ for $0 \leq x \leq 3$ about the line $y=15 .(746.442)$
