HW #1 – Limits and Continuity Review

1.
$$(NC - 2008) \lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$$
 is
A. -3 B. -2 C. 2 D. 3 E. Nonexistent
2. $(NC - 2008) \lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2}$ is
A. -1/2 B. 0 C. 1 D. 5/3 + 1 E. Nonexistent
3. $(NC - 2008)$ Let *f* be the function defined below. Which of the following statements
about *f* are true? $f(x) = \begin{cases} \frac{x^2-4}{1}; if x \neq 2\\ 1; if x = 2 \end{cases}$
1. *f* has a limit at $x = 2$. II. *f* is continuous at $x = 2$. III. *f* is differentiable at $x = 2$.
A. 1 only B. II only C. III only D. I and II only E. I, II, and III
4. $(NC - 2003)$ For $x \ge 0$, the horizontal line $y = 2$ is an asymptote for the graph of the
function f. Which of the following statements must be true?
A. $f(0) = 2$ D. $\lim_{x \to 0} f(x) = \infty$
B. $f(x) \neq 2$ for all $x \ge 0$ E. $\lim_{x \to 0} f(x) = \infty$
C. $f(2)$ is undefined
5. $(NC - 2003) \lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{6x^3 - 3x^2 + 2x - 1}$
A. 4 B. 1 C. $\frac{1}{4}$ D. 0 E. -1
6. $(NC - 2003) \text{ The graph of a function f is shown at right. At
which value of x is f continuous, but not differentiable?
A. a D. d
B. b E. e
C. c
7. $(NC - 2003)$ Let *f* be the function given below. Which of the following statements are
true about *f*? $f(x) = \begin{cases} x + 2 & x \le 3 \\ 4x - 7 & x > 3 \end{cases}$ III. *f* is differentiable at $x = 3$.
III. *f* is differentiable at $x = 3$.$

A. None

B. I only C. II only D. I and II only E. I, II, and III

8. (C – 2008) The figure at right shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true?

 $\lim_{x\to 2^-} f(x) \text{ exists.}$

 $\lim_{x\to 2^+} f(x) \text{ exists.}$

 $\lim_{x \to 2} f(x)$ exists.

١.

Π.

III.

9. (C – 2008) The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true?

A. I onlyB. II only

C. I and II only

D. I and III only E. I, II, and III

- A. For -2 < k < 2, f'(k) > 0.
- B. For -2 < k < 2, f'(k) > 0.
- C. For -2 < k < 2, f'(k) exists.
- D. For -2 < k < 2, f'(k) exists but f' is not continous.
- E. For some k, where -2 < k < 2, f'(k) does not exist.

10.(C – 2003) for which of the following does $\lim_{x\to 4} f(x)$ exist?

A. I only
B. II only
C. III only
D. I and II only
E. I and III only
E. I and III only

$$\frac{\cos x + \sin(2x) + 1}{x^2 - \pi^2}$$
A. $\frac{1}{2\pi}$
B. $\frac{1}{\pi}$
C. 1
D. Nonexistent
12.(NC) $\lim_{x \to 0} \frac{(1+x)^6 - 1}{x}$
A. 0
B. 1
C. 6
D. ∞
E. Nonexistent
13.(NC) $\lim_{x \to 0} \frac{\cos x - 1}{x}$
A. -1
B. 0
C. 1
D. ∞
E. Nonexistent

HW #2 – Derivatives and Tangents Review

1.
$$(NC - 2008)$$
 If $f(x) = (x - 1)(x^2 + 2)^3$, then $f'(x) =$
A. $6x(x^2 + 2)^2$
C. $(x^2 + 2)^2(x^2 + 3x - 1)$
E. $-3(x - 1)(x^2 + 2)^2$
B. $6x(x - 1)(x^2 + 2)^2$
D. $(x^2 + 2)^2(7x^2 - 6x + 2)$

2. (NC - 2008) If
$$f(x) = \cos(3x)$$
, then $f'\left(\frac{\pi}{9}\right) =$
A. $\frac{3\sqrt{3}}{2}$ B. $\frac{\sqrt{3}}{2}$ C. $-\frac{\sqrt{3}}{2}$ D. $-\frac{3}{2}$ E. $-\frac{3\sqrt{3}}{2}$

3. (NC – 2008) The graph of a function f is shown at right. Which of the following could be the graph of the derivative of f?

4. (NC - 2008) If $f(x) = e^{(2/x)}$, then f'(x) =A. $2e^{(2/x)} \ln x$ B. $e^{(2/x)}$ C. $e^{(-2/x^2)}$ D. $-\frac{2}{x^2}e^{(2/x)}$ E. $-2x^2e^{(2/x)}$

5. (NC - 2008) If $f(x) = x^2 + 2x$, then $\frac{d}{dx}(f(\ln x)) =$ A. $\frac{2 \ln x + 2}{x}$ B. $2x \ln x + 2$ C. $2 \ln x + 2$ D. $2 \ln x + \frac{2}{x}$ E. $\frac{2x+2}{x}$

6. (NC - 2008) In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k? A. -3 B. -2 C. -1 D. 0 E. 1

7. (NC - 2008) If
$$\sin(xy) = x$$
, then $\frac{dy}{dx} =$
A. $\frac{1}{\cos(xy)}$ B. $\frac{1}{x\cos(xy)}$ C. $\frac{1-\cos(xy)}{\cos(xy)}$ D. $\frac{1-y\cos(xy)}{x\cos(xy)}$ E. $\frac{y(1-\cos(xy))}{x}$

8. (NC – 2008) A particle moves along a straight line. The graph of the particle's position x(t) at time t is shown below for 0 < t < 6. The graph has horizontal tangents at t = 1 and t = 5 and a point of inflection at t = 2. For what values of t is the velocity of the particle increasing?

- D. 3 < t < 5 only
- E. 1 < t < 2 and 5 < t < 6

determined

9. (NC – 2008) The function f is twice differentiable with f(2) = 1, f'(2) = 4, and f''(2) = 3. What is the value of the approximation of f(1.9) using the line tangent to the graph of f at x = 2?

A. 0.4 B. 0.6 C. 0.7 D. 1.3 E. 1.4

10. (NC – 2008) Let f be the function defined below, where c and d are constants. If f is differentiable at x = 2, what is the value of c + d? $f(x) = \begin{cases} cx + d & for \ x \le 2 \\ x^2 - cx & for \ x > 2 \end{cases}$ A. -4 B. -2 C. 0 D. 2 E. 4

11.(NC - 2008) What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$? A. 2 B. ½ C. 0 D. -½ E. -2

12.(NC - 2008) Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)? A. $-\frac{1}{2}$ B. $-\frac{1}{8}$ C. $\frac{1}{6}$ D. $\frac{1}{3}$ E. Cannot be

13.(C - 2008) A particle moves along a straight line with velocity given by $v(t) = 7 - (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3? A. -0.914 B. 0.055 C. 5.486 D. 6.086 E. 18.087

HW #3 – Applications of Derivatives and Review

1. (NC – 2008) The polynomial function f has selected values of its second derivative f'' given in the table above. Which of the following statements must be true?

x	0	1	2	3
$f^{\prime\prime}(x)$	5	0	-7	4

- A. f is increasing on the interval (0,2).
- B. f is decreasing on the interval (0,2).
- C. *f* has a local maximum at x = 1.
- D. The graph of f has a point of inflection at x = 1.
- E. The graph of f changes concavity in the interval (0,2).

2. (NC – 2008) Let f be a function with a second derivative given by $f''(x) = x^2(x-3)(x-6)$. What are the x –coordinates of the points of inflection of the graph of f?

A. 0 only B. 3 only C. 0 and 6 only D. 3 and 6 only E. 0, 3, and 6

- 3. (NC 2003) The graph of f', the derivative of the function f, is shown at right. Which of the following statements is true about f?
 - A. f is decreasing for $-1 \le x \le 1$.
 - B. *f* is increasing for $-2 \le x \le 0$.
 - C. *f* is increasing for $1 \le x \le 2$.
 - D. f has a local minimum at x = 0.
 - E. *f* is not differentiable at x = -1 and x = 1.

4. (NC – 2003) The function f has the property that f(x), f'(x), and f''(x) are negative for all real values x. Which of the following could be the graph of f?

- 5. (NC 2003) Let f be the function with derivative given by $f'(x) = x^2 \frac{2}{x}$. On which of the following intervals is f decreasing?
 - A. $(-\infty, -1]$ only C. [-1, 0) only B. $(-\infty, 0)$ D. $(0, \sqrt[3]{2})$

E. $\sqrt[3]{2},\infty$

7. (C – 2008) The first derivative of the function f is defined by $f'(x) = \sin(x^3 - x)$ for $0 \le x \le 2$. On what interval(s) is f increasing?

- A. $1 \le x \le 1.445$
- B. $1 \le x \le 1.691$
- C. $1.445 \le x \le 1.875$

D. $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$ E. $0 \le x \le 1$ and $1.691 \le x \le 2$

D. -24π

8. (C – 2008) The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)? B. 2 C. 3 A. 1 D. 4 E. 5

9. (C – 2008) The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S = 4\pi r^2$)

A. -108π B. −72*π* C. -48π

10.(C - 2008) The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at x = -1, x = 1, and x = 3. At which of the following values of x does f have a relative maximum?

- A. -2 only D. -1 and 3 only
- B. 1 only E. -2, 1, and 4
- C. 4 only

E. −16π

HW #4 – Integration Techniques Review

1.
$$(NC - 2008) \int \frac{1}{x^2} dx =$$

A. $\ln x^2 + C$
B. $-\ln x^2 + C$
C. $x^{-1} + C$
D. $-x^{-1} + C$

2.
$$(NC - 2008) \int (\sin(2x) + \cos(2x)) dx =$$

A. $\frac{1}{2}\cos(2x) + \frac{1}{2}\sin(2x) + C$
B. $-\frac{1}{2}\cos(2x) + \frac{1}{2}\sin(2x) + C$

3. (NC – 2008) The graph of the piecewise linear function f is shown in the figure above. If $g(x) = \int_{-2}^{x} f(t)dt$, which of the following values is greatest?

- A. g(-3)D. g(1)B. g(-2)E. g(2)
- C. g(0)

4. (NC – 2008) The graph of function f is shown above for $0 \le x \le 3$. Of the following, which has the least value? A. $\int_{1}^{3} f(x) dx$

B. Left Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 equal subintervals

C. Right Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 equal subintervals

D. Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 equal subintervals

E. Trapezoidal Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 equal subintervals

5.
$$(NC - 2008) \int \frac{x}{x^2 - 4} dx =$$

A. $\frac{-1}{4(x^2 - 4)^2} + C$
B. $\frac{1}{2(x^2 - 4)} + C$
C. $\frac{1}{2} \ln |x^2 - 4| + C$
D. $2 \ln |x^2 - 4| + C$
E. $\frac{1}{2} \arctan\left(\frac{x}{2}\right) + C$

E.
$$-2x^{-3} + C$$

C.
$$2\cos(2x) + 2\sin(2x) + C$$

D. $2\cos(2x) - 2\sin(2x) + C$
E. $-2\cos(2x) + 2\sin(2x) + C$

gives the population of the city?

A. $\int_0^4 f(x) dx$

B. $7 \int_{0}^{4} f(x) dx$

C. $28 \int_0^4 f(x) dx$

D. $\int_0^7 f(x) dx$ E. $4 \int_0^7 f(x) dx$

HW #5 – Particle Motion, Differential Equations, etc.

- 1. (NC 2008) A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for time $t \ge 0$. If the particle is at position x = 2 at time t = 0, what is the position of the particle at t = 1?
 - A. 4 B. 6 C. 9 D. 11 E. 12
- 2. (NC 2008) A particle moves along a straight line. The graph of the particle's position x(t) at time t is shown above for 0 < t < 6. The graph has horizontal tangents at t = 1 and t = 5 and a point of inflection at t = 2. For what values of t is the velocity of the particle increasing?
 - A. 0 < t < 2C. 2 < t < 6E. 1 < t < 2 andB. 1 < t < 5D. 3 < t < 5 only5 < t < 6
- 3. (NC 2008) Which of the following is the solution to the differential equation $\frac{dy}{dx} = \frac{x^2}{y}$ with the initial condition y(3) = -2?

A.
$$y = 2e^{-9+x^3/3}$$

B. $y = -2e^{-9+x^3/3}$
C. $y = \sqrt{\frac{2x^3}{3}}$
D. $y = \sqrt{\frac{2x^3}{3} - 14}$
E. $y = -\sqrt{\frac{2x^3}{3} - 14}$

4. (NC – 2003) A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 21t^2 + 72t - 53$. At what time t is the particle at rest?

- A. t = 1 only
 C. $t = \frac{7}{2}$ only
 E. t = 3 and t = 4

 B. t = 3 only
 D. t = 3 and $t = \frac{7}{2}$
- 5. (C 2008) The table gives selected values of the velocity, v(t), of a particle moving along the x axis. At time t = 0, the particle is at the origin. Which of the following could be the position, x(t), of the particle for $0 \le t \le 4$?

6. (C – 2008) An object traveling in a straight line has position x(t) at time t. If the initial position is x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1 + t^2}$, what is the position of the object at time t = 3? A. 0.431 B. 2.154 C. 4.512 D. 6.512 E. 17.408

7. (C - 2003) A particle moves along the x-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = 3 + 4.1 \cos(0.9t)$. What is the acceleration of the particle at time t = 4? A. -2.016 B. -0.677 C. 1.633 D. 1.814 E. 2.978

8. (C - 2003) The velocity, in ^{ft}/_{sec}, of a particle moving along the x-axis is given by the function v(t) = e^t + te^t. What is the average velocity of the particle from time t = 0 to time t = 3?
A. 20.086 ft/sec
B. 26.447 ft/sec
C. 32.809 ft/sec
D. 40.671 ft/sec

9. (NC - 2003) A particle moves along the x-axis so that at any time t > 0, its acceleration is given by $a(t) = \ln(1 + 2^t)$. If the velocity of the particle is 2 at time t = 1, then the velocity of the particle at time t = 2 is A. 0.462 B. 1.609 C. 2.555 D. 2.886 E. 3.346

10. (NC – Sample) At time t, a population of bacteria grows at the rate of 5e^{0.2t} + 4t grams per day where t is measured in days. By how many grams has the population grown from time t = 0 days to t = 10 days?
A. 5e² + 40
B. 5e² + 195
C. 25e² + 175
D. 25e² + 375

11.(NC – Sample) Which of the following is the solution to the differential equation $\frac{dy}{dx} = y \sec^2 x \text{ with initial condition } y\left(\frac{\pi}{4}\right) = -1?$ A. $y = -e^{\tan x}$ B. $y = -e^{(-1+\tan x)}$ C. $y = -e^{(\sec^3 x - 2\sqrt{2})/3}$ D. $y = -\sqrt{2 \tan x - 1}$