1. (NC - 2008) $\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)}$ is
A. -3
B. -2
C. 2
D. 3
E. Nonexistent
2. (NC -2008$) \lim _{x \rightarrow 0} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
A. $-1 / 2$
B. 0
C. 1
D. $5 / 3+1$
E. Nonexistent
3. ($\mathrm{NC}-2008$) Let \boldsymbol{f} be the function defined below. Which of the following statements about f are true? $f(x)=\left\{\begin{array}{l}\frac{x^{2}-4}{x-2} \text {; if } x \neq 2 \\ 1 ; \text { if } x=2\end{array}\right.$
I. f has a limit at $x=2$. II. f is continuous at $x=2$. III. f is differentiable at $x=2$.
A. I only
B. II only
C. III only
D. I and II only
E. I, II, and III
4. (NC - 2003) For $x \geq 0$, the horizontal line $y=2$ is an asymptote for the graph of the function f . Which of the following statements must be true?
A. $f(0)=2$
B. $f(x) \neq 2$ for all $x \geq 0$
C. $f(2)$ is undefined
D. $\lim _{x \rightarrow 2} f(x)=\infty$
E. $\lim _{x \rightarrow \infty} f(x)=2$
5. (NC - 2003) $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x^{2}+3 x-4}{4 x^{3}-3 x^{2}+2 x-1}$
A. 4
B. 1
C. $\frac{1}{4}$
D. 0
E. $\quad-1$
6. (NC - 2003) The graph of a function f is shown at right. At which value of x is f continuous, but not differentiable?
A. a
D. d
B. b
E. e
C. c

7. (NC - 2003) Let f be the function given below. Which of the following statements are true about f ? $f(x)= \begin{cases}x+2 & x \leq 3 \\ 4 x-7 & x>3\end{cases}$
I. $\quad \lim _{x \rightarrow 3} f(x)$ exists. II. f is continuous at $x=3$. III. f is differentiable at $x=3$.
A. None
B. I only
C. II only
D. I and II only
E. I, II, and III
8. ($C-2008$) The figure at right shows the graph of a function f with domain $0 \leq x \leq 4$. Which of the following statements are true?
I. $\lim _{x \rightarrow 2^{-}} f(x)$ exists.
A. I only
II. $\lim _{x \rightarrow 2^{+}} f(x)$ exists.
B. II only
III. $\lim _{x \rightarrow 2} f(x)$ exists.
C. I and II only
D. I and III only
E. I, II, and III

Graph of f
9. ($\mathrm{C}-2008$) The function f is continuous for $-2 \leq x \leq 2$ and $f(-2)=f(2)=0$. If there is no c , where $-2<c<2$, for which $f^{\prime}(c)=0$, which of the following statements must be true?
A. For $-2<k<2, f^{\prime}(k)>0$.
B. For $-2<k<2, f^{\prime}(k)>0$.
C. For $-2<k<2, f^{\prime}(k)$ exists .
D. For $-2<k<2, f^{\prime}(k)$ exists but f^{\prime} is not continous.
E. For some k, where $-2<k<2, f^{\prime}(k)$ does not exist.
10.(C-2003) for which of the following does $\lim _{x \rightarrow 4} f(x)$ exist?
A. I only
B. II only
C. III only
D. I and II only
E. I and III only

11. (NC - Sample) $\lim _{x \rightarrow \pi} \frac{\cos x+\sin (2 x)+1}{x^{2}-\pi^{2}}$
A. $\frac{1}{2 \pi}$
B. $\frac{1}{\pi}$
C. 1
D. Nonexistent
12.(NC) $\lim _{x \rightarrow 0} \frac{(1+x)^{6}-1}{x}$
A. 0
B. 1
C. 6
D. ∞
E. Nonexistent
13.(NC) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$
A. -1
B. 0
C. 1
D. ∞
E. None of these

1. ($\mathrm{NC}-2008$) If $f(x)=(x-1)\left(x^{2}+2\right)^{3}$, then $f^{\prime}(x)=$
A. $6 x\left(x^{2}+2\right)^{2}$
B. $6 x(x-1)\left(x^{2}+2\right)^{2}$
C. $\left(x^{2}+2\right)^{2}\left(x^{2}+3 x-1\right)$
D. $\left(x^{2}+2\right)^{2}\left(7 x^{2}-6 x+2\right)$
E. $-3(x-1)\left(x^{2}+2\right)^{2}$
2. (NC-2008) If $f(x)=\cos (3 x)$, then $f^{\prime}\left(\frac{\pi}{9}\right)=$
A. $\frac{3 \sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. $-\frac{3}{2}$
E. $-\frac{3 \sqrt{3}}{2}$
3. ($N C-2008$) The graph of a function f is shown at right. Which of the following could be the graph of the derivative of f ?

Graph of f

(E)

4. (NC - 2008) If $f(x)=e^{(2 / x)}$, then $f^{\prime}(x)=$
A. $2 e^{(2 / x)} \ln x$
B. $e^{(2 / x)}$
c. $e^{\left(-2 / x^{2}\right)}$
D. $-\frac{2}{x^{2}} e^{(2 / x)}$
E. $-2 x^{2} e^{(2 / x)}$
5. (NC -2008) If $f(x)=x^{2}+2 x$, then $\frac{d}{d x}(f(\ln x))=$
A. $\frac{2 \ln x+2}{x}$
B. $2 x \ln x+2$
C. $2 \ln x+2$
D. $2 \ln x+\frac{2}{x}$
E. $\frac{2 x+2}{x}$
6. (NC - 2008) In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
A. -3
B. -2
C. -1
D. 0
E. 1
7. (NC -2008) If $\sin (x y)=x$, then $\frac{d y}{d x}=$
A. $\frac{1}{\cos (x y)}$
B. $\frac{1}{\mathrm{x} \cos (x y)}$
C. $\frac{1-\cos (x y)}{\cos (x y)}$
D. $\frac{1-y \cos (x y)}{x \cos (x y)}$
E. $\frac{y(1-\cos (x y))}{x}$
8. (NC - 2008) A particle moves along a straight line. The graph of the particle's position $x(t)$ at time t is shown below for $0<t<6$. The graph has horizontal tangents at $t=1$ and $t=5$ and a point of inflection at $t=2$. For what values of t is the velocity of the particle increasing?
A. $0<t<2$
B. $1<t<5$

C. $2<t<6$
D. $3<t<5$ only
E. $1<t<2$ and $5<t<6$
9. (NC - 2008) The function f is twice differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?
A. 0.4
B. 0.6
C. 0.7
D. 1.3
E. 1.4
10. (NC - 2008) Let f be the function defined below, where c and d are constants. If f is differentiable at $x=2$, what is the value of $c+d ? f(x)= \begin{cases}c x+d & \text { for } x \leq 2 \\ x^{2}-c x & \text { for } x>2\end{cases}$
A. -4
B. -2
C. 0
D. 2
E. 4
11.($N C$ - 2008) What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
A. 2
B. $1 / 2$
C. 0
D. $-1 / 2$
E. -2
12. ($\mathrm{NC}-2008$) Let f be a differentiable function such that $f(3)=15, f(6)=3$, $f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(3)$?
A. $-\frac{1}{2}$
B. $-\frac{1}{8}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$
E. Cannot be determined
13.(C - 2008) A particle moves along a straight line with velocity given by $v(t)=7-(1.01)^{-t^{2}}$ at time $t \geq 0$. What is the acceleration of the particle at time $t=3$?
A. -0.914
B. 0.055
C. 5.486
D. 6.086
E. 18.087

1. ($\mathrm{NC}-2008$) The polynomial function f has selected values of its second derivative $f^{\prime \prime}$ given in the table above. Which of the following statements must be true?

x	0	1	2	3
$f^{\prime \prime}(x)$	5	0	-7	4

A. f is increasing on the interval $(0,2)$.
B. f is decreasing on the interval $(0,2)$.
C. f has a local maximum at $x=1$.
D. The graph of f has a point of inflection at $x=1$.
E. The graph of f changes concavity in the interval $(0,2)$.
2. ($\mathrm{NC}-2008$) Let f be a function with a second derivative given by $f^{\prime \prime}(x)=x^{2}(x-3)(x-6)$. What are the x-coordinates of the points of inflection of the graph of f ?
A. 0 only
B. 3 only
C. 0 and 6 only
D. 3 and 6 only
E. 0,3 , and 6
3. ($N C-2003$) The graph of f^{\prime}, the derivative of the function f, is shown at right. Which of the following statements is true about f ?
A. f is decreasing for $-1 \leq x \leq 1$.
B. f is increasing for $-2 \leq x \leq 0$.
C. f is increasing for $1 \leq x \leq 2$.
D. f has a local minimum at $x=0$.
E. f is not differentiable at $x=-1$ and $x=1$.

Graph of f^{\prime}
4. (NC - 2003) The function f has the property that $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ are negative for all real values x. Which of the following could be the graph of f ?
(A)

(D)

(B)

(E)

(C)

5. ($\mathrm{NC}-2003$) Let f be the function with derivative given by $f^{\prime}(x)=x^{2}-\frac{2}{x}$. On which of the following intervals is f decreasing?
A. $(-\infty,-1$] only
B. $(-\infty, 0)$
C. $[-1,0)$ only
D. $(0, \sqrt[3]{2})$
E. $[\sqrt[3]{2}, \infty)$
6. (C - 2008) The graph of f^{\prime}, the derivative of f, is shown at right for $-2 \leq x \leq 5$. On what interval(s) is f increasing?
A. $[-2,1]$ only
D. $[0,1.5]$ and $[3,5]$
B. $[-2,3]$
E. $[-2,-1],[1,2]$,
C. $[3,5]$ only

Graph of f^{\prime}
7. (C - 2008) The first derivative of the function f is defined by $f^{\prime}(x)=\sin \left(x^{3}-x\right)$ for $0 \leq x \leq 2$. On what interval(s) is f increasing?
A. $1 \leq x \leq 1.445$
B. $1 \leq x \leq 1.691$
C. $1.445 \leq x \leq 1.875$
D. $0.577 \leq x \leq 1.445$ and $1.875 \leq x \leq 2$
E. $0 \leq x \leq 1$ and $1.691 \leq x \leq 2$
8. (C - 2008) The derivative of the function f is given by $f^{\prime}(x)=x^{2} \cos \left(x^{2}\right)$. How many points of inflection does the graph of f have on the open interval $(-2,2)$?
A. 1
B. 2
C. 3
D. 4
E. 5
9. ($C-2008$) The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S=4 \pi r^{2}$)
A. -108π
B. -72π
C. -48π
D. -24π
E. -16π
10.(C - 2008) The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at $x=-1, x=1$, and $x=3$. At which of the following values of x does f have a relative maximum?
A. -2 only
B. 1 only
C. 4 only
D. -1 and 3 only
E. $-2,1$, and 4

1. $(\mathrm{NC}-2008) \int \frac{1}{x^{2}} d x=$
A. $\ln x^{2}+C$
B. $-\ln x^{2}+C$
C. $x^{-1}+C$
D. $-x^{-1}+C$
E. $-2 x^{-3}+C$
2. $(N C-2008) \int(\sin (2 x)+\cos (2 x)) d x=$
A. $\frac{1}{2} \cos (2 x)+\frac{1}{2} \sin (2 x)+C$
B. $-\frac{1}{2} \cos (2 x)+\frac{1}{2} \sin (2 x)+C$
C. $2 \cos (2 x)+2 \sin (2 x)+C$
D. $2 \cos (2 x)-2 \sin (2 x)+C$
E. $-2 \cos (2 x)+2 \sin (2 x)+C$
3. ($\mathrm{NC}-2008$) The graph of the piecewise linear function f is shown in the figure above. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is greatest?
A. $g(-3)$
B. $g(-2)$
C. $g(0)$
D. $g(1)$
E. $g(2)$

Graph of f
4. (NC - 2008) The graph of function f is shown above for $0 \leq x \leq 3$. Of the following, which has the least value?
A. $\int_{1}^{3} f(x) d x$
B. Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 equal subintervals
C. Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$
 with 4 equal subintervals
D. Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 equal subintervals
E. Trapezoidal Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 equal subintervals
5. (NC - 2008) $\int \frac{x}{x^{2}-4} d x=$
A. $\frac{-1}{4\left(x^{2}-4\right)^{2}}+C$
B. $\frac{1}{2\left(x^{2}-4\right)}+C$
C. $\frac{1}{2} \ln \left|x^{2}-4\right|+C$
D. $2 \ln \left|x^{2}-4\right|+C$
E. $\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C$
6. (NC - 2008) The graph of the function f shown above has horizontal tangents at $x=2$ and $x-5$. Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$. For what values of x does the graph of g have a point of inflection?
A. 2 only
B. 4 only
C. 2 and 5 only

D. 2,4 , and 5
E. 0,4 , and 6
7. (C -2008) If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=-4$, what is the value of $\int_{-5}^{5} f(x) d x$?
A. -21
B. -13
C. 0
D. 13
E. 21
8. (C-2008) If $G(x)$ is an antiderivative for $f(x)$ and $G(2)=-7$, then $G(4)=$
A. $f^{\prime}(4)$
B. $-7+f^{\prime}(4)$
C. $\int_{2}^{4} f(t) d t$
D. $\int_{2}^{4}(-7+f(t)) d t$
E. $-7+\int_{2}^{4} f(t) d t$
9. ($C-2008$) What is the area enclosed by the curves $y=x^{3}-8 x^{2}+18 x-15$ and $y=x+5$?
A. 10.667
B. 11.833
C. 14.583
D. 21.333
E. 32
10.(C 2008) What is the average value of $y=\frac{\cos x}{x^{2}+x+2}$ on the closed interval $[-1,3]$?
A. -0.085
B. 0.090
C. 0.183
D. 0.244
E. 0.732
11.(C - 2008) A city beside a river has a rectangular boundary as shown in the figure at right. The population density of the city at any point along a strip x miles from the river's edge is $f(x)$ persons per square mile. Which of the following expressions gives the population of the city?
A. $\int_{0}^{4} f(x) d x$
B. $7 \int_{0}^{4} f(x) d x$
C. $28 \int_{0}^{4} f(x) d x$
D. $\int_{0}^{7} f(x) d x$
E. $4 \int_{0}^{7} f(x) d x$

1. ($\mathrm{NC}-2008$) A particle moves along the x-axis with velocity given by $v(t)=3 t^{2}+6 t$ for time $t \geq 0$. If the particle is at position $x=2$ at time $t=0$, what is the position of the particle at $t=1$?
A. 4
B. 6
C. 9
D. 11
E. 12
2. ($N C$-2008) A particle moves along a straight line. The graph of the particle's position $x(t)$ at time t is shown above for $0<t<6$. The graph has horizontal tangents at $t=1$ and $t=5$ and a point of inflection at $t=2$. For what values of t is the velocity of the particle increasing?
A. $0<t<2$
C. $2<t<6$
E. $1<t<2$ and
B. $1<t<5$
D. $3<t<5$ only $5<t<6$
3. ($\mathrm{NC}-2008$) Which of the following is the solution to the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y}$ with the initial condition $y(3)=-2$?
A. $y=2 e^{-9+x^{3} / 3}$
B. $y=-2 e^{-9+x^{3} / 3}$
C. $y=\sqrt{\frac{2 x^{3}}{3}}$
D. $y=\sqrt{\frac{2 x^{3}}{3}-14}$
E. $y=-\sqrt{\frac{2 x^{3}}{3}-14}$
4. ($N C$ - 2003) A particle moves along the x-axis so that at time $t \geq 0$ its position is given by $x(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time t is the particle at rest?
A. $t=1$ only
B. $t=3$ only
C. $t=\frac{7}{2}$ only
D. $t=3$ and $t=\frac{7}{2}$
E. $t=3$ and $t=4$
5. ($C-2008$) The table gives selected values of the velocity, $v(t)$, of a particle moving along the x-axis. At time $t=0$, the particle is at the origin. Which of the following could be the position, $x(t)$, of the particle for $0 \leq t \leq 4$?

t	0	1	2	3	4
$v(t)$	-1	2	3	0	-4

(A)

(B)

(C) $x(t)$

(D) $x(t)$

6. ($C-2008$) An object traveling in a straight line has position $x(t)$ at time t. If the initial position is $x(0)=2$ and the velocity of the object is $v(t)=\sqrt[3]{1+t^{2}}$, what is the position of the object at time $t=3$?
A. 0.431
B. 2.154
C. 4.512
D. 6.512
E. 17.408
7. ($C-2003$) A particle moves along the x-axis so that at any time $t \geq 0$, its velocity is given by $v(t)=3+4.1 \cos (0.9 t)$. What is the acceleration of the particle at time $t=4$?
A. -2.016
B. -0.677
C. 1.633
D. 1.814
E. 2.978
8. ($C-2003$) The velocity, in $\frac{f t}{s e c}$, of a particle moving along the x-axis is given by the function $v(t)=e^{t}+t e^{t}$. What is the average velocity of the particle from time $t=0$ to time $t=3$?
A. $20.086 \mathrm{ft} / \mathrm{sec}$
B. $26.447 \mathrm{ft} / \mathrm{sec}$
C. $32.809 \mathrm{ft} / \mathrm{sec}$
D. $40.671 \mathrm{ft} / \mathrm{sec}$
E. $79.342 \mathrm{ft} / \mathrm{sec}$
9. ($N C-2003$) A particle moves along the x-axis so that at any time $t>0$, its acceleration is given by $a(t)=\ln \left(1+2^{t}\right)$. If the velocity of the particle is 2 at time $t=1$, then the velocity of the particle at time $t=2$ is
A. 0.462
B. 1.609
C. 2.555
D. 2.886
E. 3.346
10. (NC - Sample) At time t , a population of bacteria grows at the rate of $5 e^{0.2 t}+4 t$ grams per day where t is measured in days. By how many grams has the population grown from time $t=0$ days to $t=10$ days?
A. $5 e^{2}+40$
B. $5 e^{2}+195$
C. $25 e^{2}+175$
D. $25 e^{2}+375$
11. (NC - Sample) Which of the following is the solution to the differential equation $\frac{d y}{d x}=y \sec ^{2} x$ with initial condition $y\left(\frac{\pi}{4}\right)=-1$?
A. $y=-e^{\tan x}$
B. $y=-e^{(-1+\tan x)}$
C. $y=-e^{\left(\sec ^{3} x-2 \sqrt{2}\right) / 3}$
D. $y=-\sqrt{2 \tan x-1}$

