\qquad
A. Area Between Two Curves

1. Find the area of the region bounded by $y=\sqrt{x}, y=4$, and $y=-\frac{1}{4} x$.
2. (No Calculator) Find the area of the region bounded by $y=2-x^{2}$ and $y=x$.
3. Find the area of the region bounded by $x=\frac{1}{2} y^{2}, y=1$, and $y=-\frac{1}{2} x+3$.
4. Find the area of the region bounded by $y=-\frac{x^{3}}{2}+2 x^{2}$, and $y=-x^{2}+4 x$.

B. Disk/Washer Method

1. Find the volume of the solid that results when the region bounded by $y=5-x^{2}$, the y-axis, and the line $y=1$ is revolved about:
a. The y-axis (No Calculator)
b. The line $x=3$
2. Find the volume of the solid that results when the region enclosed by the curves $y=\sqrt{x}+1$, and $y=x^{2}+1$ is revolved about the line $\mathrm{y}=-1$.
3. Find the volume of the solid that results when the region enclosed by the curves $x=-y^{2}+2$ and $\mathrm{x}=\mathrm{y}$ is revolved about the line $x=-2$.

C. Shell Method

1. Find the volume of the solid that results when the region enclosed by the curves $y=\sqrt{x}+4$ and $y=x^{2}+4$ is revolved about the x-axis.
2. Find the volume of the solid that results when the region enclosed by the curves $y=\sqrt{x}$ and $y=7, \mathrm{x}=0$, and $x=4$ is revolved about the x-axis.
3. Find the volume of the solid that results when the region enclosed by the curves $y=-x^{2}+7$ and $y=x^{2}+5$ is revolved about the line $x=2$.

D. Volumes with Known Cross Sections

1. The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x -axis. Cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
2. The base of a solid is the region enclosed by the semicircle $y=-\frac{x^{2}}{9}+4$ and the x-axis. Cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.

E. Volume Miscellaneous

1. The region bounded by $y=\cos x$, the x-axis and the y-axis is revolved about the given axis. Find the volume of each resulting solid.
a. Axis of revolution: x-axis
b. Axis of revolution: y-axis
c. Axis of revolution: $x=3$
d. Axis of revolution: $y=-2$
