A. Area Between Two Curves

- 1. Find the area of the region bounded by $y = \sqrt{x}$, y = 4, and $y = -\frac{1}{4}x$.
- 2. (No Calculator) Find the area of the region bounded by $y = 2 x^2$ and y = x.
- 3. Find the area of the region bounded by $x = \frac{1}{2}y^2$, y = 1, and $y = -\frac{1}{2}x+3$.
- 4. Find the area of the region bounded by $y = -\frac{x^3}{2} + 2x^2$, and $y = -x^2 + 4x$.

B. Disk/Washer Method

- 1. Find the volume of the solid that results when the region bounded by $y = 5 x^2$, the y-axis, and the line y = 1 is revolved about:
 - a. The y-axis (No Calculator) b. The line x = 3
- 2. Find the volume of the solid that results when the region enclosed by the curves $y = \sqrt{x} + 1$, and $y = x^2 + 1$ is revolved about the line y = -1.
- 3. Find the volume of the solid that results when the region enclosed by the curves $x = -y^2 + 2$ and x = y is revolved about the line x = -2.

C. Shell Method

- 1. Find the volume of the solid that results when the region enclosed by the curves $y = \sqrt{x} + 4$ and $y = x^2 + 4$ is revolved about the x-axis.
- 2. Find the volume of the solid that results when the region enclosed by the curves $y = \sqrt{x}$ and y = 7, x = 0, and x = 4 is revolved about the x-axis.
- 3. Find the volume of the solid that results when the region enclosed by the curves $y = -x^2 + 7$ and $y = x^2 + 5$ is revolved about the line x = 2.

D. Volumes with Known Cross Sections

- 1. The base of a solid is the region enclosed by the semicircle $y = \sqrt{25 x^2}$ and the x-axis. Cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
- 2. The base of a solid is the region enclosed by the semicircle $y = -\frac{x^2}{9} + 4$ and the x-axis. Cross sections perpendicular to the x-axis are semicircles. Find the volume of the solid.

E. Volume Miscellaneous

- 1. The region bounded by y = cos x, the x-axis and the y-axis is revolved about the given axis. Find the volume of each resulting solid.
 - a. Axis of revolution: x-axis
 - b. Axis of revolution: y-axis
 - c. Axis of revolution: x = 3
 - **d.** Axis of revolution: y = -2