AP Calculus: Chapter 4 Integration Study Guide

1. Find the general solution of the differential equation. Use the given point to find the particular solution of the equation. $\frac{d y}{d x}=2 \sqrt{x},(4,12)$
2. Find each indefinite integral.
a. $\int(5-x) d x$
b. $\int\left(\frac{x^{2}+x+1}{\sqrt{x}}\right) d x$
c. $\int\left(\frac{\cos x}{1-\cos ^{2} x}\right) d x$
3. Evaluate the sum: $\sum_{k=3}^{9} 2 k-5=$
4. Use properties of summation to evaluate the limit. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4 i^{2}(i-1)}{n^{4}}=$
5. Use the limit process to find the area of the region between the graph of the function and the x -axis over the interval. $y=2 x-x^{3},[0,1]$
6. Approximate the area of the region bounded by the curve $y=\sqrt{x}+2$ and the x-axis on the interval $[0,2]$.
a. Use a right hand sum and 4 subintervals of equal width.
b. Use a midpoint sum and two subintervals of equal width.
7. Set up a limit that would evaluate the definite integral: $\int_{1}^{3} 3 x^{2} d x$
8. Given $\int_{0}^{3} f(x) d x=4$ and $\int_{3}^{6} f(x) d x=-1$, evaluate
a. $\int_{0}^{6} f(x) d x$
b. $\int_{6}^{3} f(x) d x$
c. $\int_{3}^{3} f(x) d x$
d. $\int_{3}^{6}-5 f(x) d x$
9. Evaluate $\int_{1}^{8} \sqrt{\frac{2}{x}} d x$ using the Fundamental Theorem of Calculus.
10. Find the value(s) of \boldsymbol{c} guaranteed by the Mean Value Theorem for Integrals for the function over the given integral. $f(x)=\frac{5}{x^{3}},[2,6]$.
11. Find the average value of the function over the given interval. $f(x)=\cos x,\left[0, \frac{\pi}{2}\right]$
12. Find the derivative of each.
a. $F(x)=\int_{4}^{x} \sqrt{t} d t$
b. $F(x)=\int_{4}^{2 x}\left(x^{2}+4\right) d t$
13. Find the indefinite integral.
a. $\int \sqrt[3]{\left(1-2 x^{2}\right)}(4 x) d x$
b. $\int x^{2} \sqrt{x^{3}+2} d x$
c. $\int(x+1) \sqrt{2-x} d x$
d. $\int \frac{\cos ^{3} \theta}{2-2 \sin ^{2} \theta} d x$
14. Find the definite integral.
a. $\int_{-2}^{4} x^{2}\left(x^{3}+8\right)^{2} d x$
b. $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(x+\cos x) d x$
15. Use the differential equation and the given point to find an equation for the function. $\frac{d y}{d x}=\frac{-48}{(3 x+5)^{3}}$ and $(-1,3)$.
16. The velocity of a particle moving along the x -axis is given by $v(t)=4-$ $t^{2}, t>0$. What is the average velocity of the particle from time $t=1$ to $t=4$?
17. On a certain day, the rate at which clothing is donated to a thrift store is modeled by the function R , where $R(t)$ is measured in pounds per hour and t is the number of hours since the store opened. Using a trapezoidal sum with the three subintervals indicated in the table, what is the approximate number of pounds of clothing donated in the first 7 hours since the center opened?

\boldsymbol{t} (hours)	0	2	3	7
$\boldsymbol{R}(\boldsymbol{t})$ (pounds per hour)	45	29	12	34

18. An object moves along a straight line so that at any time t its acceleration is given by $a(t)=8 t$. At time $t=0$, the object's velocity is 10 and the object's position is 7 . What is the object's position at time $t=4$?
19. To help restore land damaged by Hurricane Matthew, sod is being added to a landscape at a rate of $s(t)=40+12 \sin (0.2 t)$ tons per hour where t is measured in hours since 7:00 AM. How many tons of sod have been added to the landscape over the 4 hour period from 7:00 AM to 11:00 AM?
