6.2 More Graphing Polynomials

1. \(f(x) = -2x^4 + 4x^3 \)
 a. End Behavior
 \(x \to \infty, f(x) \to -\infty \)
 \(x \to -\infty, f(x) \to -\infty \)
 b. \(x \)-intercepts
 \(-2x^3(x-2) = 0 \)
 \(x = 0 \) \(x = 2 \)
 c. Multiplicity
 \(x = 0 \) \(m = 3 \) passes through, flat
 \(x = 2 \) \(m = 1 \) passes through
 d. \(y \)-intercept
 \((0, 0) \)

2. \(f(x) = x^3 + x^2 - 5x + 3 \)
 a. End Behavior
 \(x \to \infty, f(x) \to \infty \)
 \(x \to -\infty, f(x) \to -\infty \)
 b. \(x \)-intercepts
 \(x = 1 \) \(x = -3 \)
 \(x = -3 \) \(x^3 + 3 = 0 \)
 c. Multiplicity
 \(x = 1 \) \(m = 2 \) bounces
 \(x = -3 \) \(m = 1 \) passes through
 d. \(y \)-intercept
 \((0, 3) \)

3. Sketch the graph described and create a polynomial function with these characteristics.
 - The graph passes through the \(x \)-axis at \(x = 0 \).
 - The graph bounces on the \(x \)-axis at \(x = -3 \).
 - As \(x \to \infty, f(x) \to -\infty \) and as \(x \to -\infty, f(x) \to \infty \).

4. Sketch the graph described and create a polynomial function with these characteristics.
 - The graph passes through the \(x \)-axis at \(x = 2 \) and \(x = -4 \).
 - The graph bounces on the \(x \)-axis at \(x = 1 \).
 - As \(x \to \infty, f(x) \to -\infty \) and as \(x \to -\infty, f(x) \to -\infty \).

\[f(x) = -(x-2)(x+4)(x-1)^2 \]